In the first installment of this series, we discussed the origins of Mode 2 Analytics, and in the second installment we focused on how to enable this capability in your organization using Cognos. Now that we’ve learned all about how Mode 2 works, let’s walk through a sample use case that highlights the Bimodal Analytics Lifecycle as well as the technical capabilities of Cognos Analytics and how they fit together.

In this example, you are the manager of a Healthcare Call Center system that is comprised of seven (7) regional centers across the country. Each call center handles contact (phone calls and online chats) from the customers that are located within the states that make up those regions.

Read more

When you think about the different ways that data gets used in your company, what comes to mind?

You surely have some executive dashboards, and some quarterly reports. There might be a reporting portal containing everything that IT created for anyone within the past decade.

Read more

At Ironside, we believe that data science is a team sport, and should be accessible to and enable as many players as possible. We work with clients on a regular basis to make data science accessible within their organization. But we also do this within our own company. Meet Tom Clancy – hear about his journey and what he has learned along the way.

Read more

When defining or assessing a Data & Analytics Strategy, Ironside leverages a proven framework of understanding the current state and comparing it to a desirable future state with a focus on six key areas, or pillars.

Read more

Last spring, I had the opportunity to attend a local analytics conference with Dr. Claudia Imhoff as the keynote speaker. As she got on stage to begin her presentation, she started out by making a statement along the lines of “For every time the phrase ‘Big Data’ is mentioned today, we will all take a shot during happy hour.” 

(Tip: Don’t try that for this article.)

Read more

In previous releases of Cognos Analytics, we have seen a trend of integrating many of the features of metadata modeling in Framework Manager into the Cognos Analytics interface. This trend is continuing with new or improved modeling capabilities being incorporated into Cognos Analytics 11.1 Data Modules.

Read more

Customer segmentation is defined as “the process of dividing customers into groups based on common characteristics so companies can market to each group effectively and appropriately.” By using the correct attributes to define the customer segment, it allows companies to identify the right customers for targeted and relevant offers. Those who successfully define and maintain customer segmentation can derive a competitive advantage from the implementation by improving customer experience.

However, there are potential pitfalls that can reduce the effectiveness of a customer segmentation initiative. This article will identify the pitfalls and propose solutions in order to improve the chances of a beneficial customer segmentation project.

Read more

Data democratization is the ability of an organization to provide information to end users in an easy and effective way. The goal is to provide self-service of information to end users with minimal IT support. There are many things that can go wrong when rolling out data democratization projects. The purpose of this article is to identify potential issues and provide guidance on how to avoid them in the democratization process.

Read more

When asked “What’s your data strategy?” do you reply “We’re getting Hadoop…” or “We just hired a data scientist…” or “If we only had a data lake, all our problems would be solved…”? Plotting a good data strategy requires more than buying a tool, hiring a resource, or adding a component to your architecture. You need something to describe:

  • the goals you are trying to achieve,
  • the stakeholders you are trying to serve, and
  • the internal capabilities required to satisfy those stakeholders and achieve those goals

Read more