By 2022, 35% of large organizations will be either sellers or buyers of data via formal online data marketplaces, up from 25% in 2020. With AI and ML supplementing existing data sources, there is always more value to be derived from large quantities of data.

For years, the data management industry has been talking about the ever-growing volumes, velocity, and variety of data.  For traditional analytics, the challenge has been about how to reduce the data used in reporting and BI; how to separate the noise from the signal, how to prioritize the most relevant and accurate data, and how to make a company’s universe of data usable to an increasingly self-service user population. This notion of having too much data is well-founded – so much data in an organization isn’t readily useful for traditional analytics. Data may be incomplete, inaccurate, too granular, unavailable, or simply not useful for a particular use case. However, in implementing AI and ML, it turns out that the more data that is available from as many sources as possible is one of the most important ingredients in building a successful model.

In traditional analytics, the user decides which data is most useful to their analysis and, in so doing, taints their results through their own intentional omissions and unintentional biases. But, in AI/ML (and especially when we’re leveraging Automated Machine Learning (AML) technologies), we really can’t have too much good data. We can throw massive amounts of data at the problem and let AML ascertain what’s relevant and helpful, and what isn’t. We want lots of data, and unfortunately we usually don’t actually have enough.

In a recent project, we met a customer who (as with most) believed that they had all the data they needed to accurately predict insurance loss risk – they knew their customers, their properties, various demographics, payment histories, on and on. And so we built a loss prediction model for them, and got good results. The customer was very pleased.  

Then we decided to train the model with a combination of internal and 3rd party data to see whether there would be a difference. We loaded several sets of data that significantly enriched that customer’s already voluminous customer and property data.  The result was a 25% increase in the efficacy of the AI model – which as any Data Scientist will tell you, is a massive improvement. And the cost of that data was a drop in the bucket relative to the scope of the larger budget.

My message to customers facing these issues has evolved; I now encourage them to seek out more data than they already have. The inclusion of external data at marginal cost can drive substantial improvements in the quality of models and outputs. And many data vendors have made it easier to test, acquire, and parse data for where it is most impactful. The bottom line is that, in the area of AI, more is definitely better, and you can never be too data-rich. 

Ironside and our partner Precisely recently published a white paper where you can learn more about data enrichment for data science, which you can download here.

The world has changed dramatically over the course of a single month, and companies are struggling even more with things that have historically challenged them:

  • Finding the best people to run, build and innovate on their analytics tools and data
  • Making these environments accessible to employees in a work-at-home model

In this Forbes article, Louis Columbus cites a recent Dresner survey that shows up to 89% of companies are seeing a hit to their BI and Analytics budgets due to COVID-19. The survey includes these two recommendations:

Recommendation #1

Invest in business intelligence (BI) and analytics as a means of understanding and executing with the change landscape.

Recommendation #2

Consider moving BI and analytical applications to third-party cloud infrastructure to accommodate employees working from home.


89% of companies are seeing a hit to their BI and Analytics budgets due to COVID-19.


We’re here to help you explore your options.

Now that the role of analytics is more important than ever to a company’s success, analytics leaders are again being asked to do much more with much less — all while companies are experiencing staff reductions, navigating the complexities of moving to a work-from-home model, and struggling to onboard permanent hires.

To address these short-term shortages (and potentially longer-term budget impacts), companies are naturally evaluating whether leveraging a managed-service approach — wholly or even just in part— can help them fill their skills gap while also reducing their overall spend.

As they weigh this decision, cost, technical expertise, market uncertainty and the effectiveness of going to a remote-work model are all top-of-mind. Here’s how these factors might affect your plans going forward:

Factor 1: Cost

As the Dresner number showed, most analytics teams need to reduce spend. Doing this mid-year is never easy, and usually comes at the expense of delayed or canceled projects, delayed or cancelled hiring, and possibly even staff reductions. All of these decrease a company’s analytics capabilities, which in turn decreases its ability to make the right business decisions at a critical time. A managed services approach to meeting critical analytics needs, even just to address a short-term skills gap, can provide valuable resources in a highly flexible way, while saving companies significant money over hiring staff and traditional consulting models.

Factor 2: Technical Expertise

A decade ago, your options for analytics tools and platforms were limited to a handful of popular technologies. Today even small departments use many different tools. We have seen organizations utilizing AWS, Azure, and private datacenters. Oracle, SQL Server, Redshift all at the same company? Yes, we have seen that as well. Some of our customers maintain more than five BI tools. At some point you have to ask: Can we hire and support the expertise necessary to run all these tools effectively? Can we find and hire a jack-of-all trades?

In a managed services model, companies can leverage true experts across a wide range of technology while varying the extent to which they use those resources at any particular time. As a result, companies get the benefit of a pool of resources in a way that a traditional hiring approach simply cannot practically provide.

Factor 3: Effectiveness of Remote Work Engagement

If you weren’t working remotely before, you probably are now. Companies are working to rapidly improve their processes and technologies to adjust to a new normal while maintaining productivity.

Managed service resourcing models have been delivering value remotely for years, using tools and processes that ensure productivity. Current events have not affected these models, therefore making them an ideal solution for companies  trying to figure out the best way to work at home.

Times are changing. We’re ready!

Ironside has traditionally offered Managed Services, to care for and maintain customer platforms and applications, and consulting services, to assist in BI and Analytics development.

Companies can leverage our Analytics Assurance Services temporarily, for a longer period of time to address specific skills gaps, or to establish a cloud environment to support remote analytic processes.

With Ironside, you can improve your data analytics within your new constraints, while reducing your costs. We’d love to show you how.

Contact us today at: Here2Help@IronsideGroup.com

Over the past week, I’ve spoken to a number of customers and partners who are adjusting to the ever-evolving reality of life during COVID-19. Beyond the many ways it has affected their personal lives and families, we’ve also discussed how it has impacted their jobs, and the role of analytics in the success of their organizations.

During these conversations, a few consistent themes have emerged from the people responsible for delivering reporting and analytics to their user communities:

  • Reliability: Continuing to deliver business as usual content despite a suddenly remote workforce
  • Resiliency: Hardening existing systems and processes to ensure continuity and security
  • Efficiency: Delivering maximum value even in the midst of a short-term business downturn
  • Innovation: Finding new ways to leverage data to address emerging challenges in areas such as supply chain, customer service, pricing optimization, marketing, and others.

While none of these topics are new to those of us in analytics, the new reality brought on by COVID-19 has made it even more important for us to succeed in every area. In an excellent Forbes article, Alteryx CEO Dean Stoecker discusses the importance and relevance of analytics professionals in driving success for their organizations in these trying times.

As he correctly concludes,

“If anyone is prepared to tackle the world’s most complex business and societal challenges—in this case, a global pandemic—it is the analytic community.”

We’re all in this together.

At Ironside, we’re taking that challenge to heart and looking at how we, too, can refocus our talents to better help our customers. Our upcoming series, Strategies for Success During Uncertain Times, will cover the steps we’re taking to help our partners weather this storm.

As of today, we’re:

  • Holding on-demand “Coffee Breaks” with some of our most experienced SMEs
  • Increasing remote trainings on key technologies
  • Rolling out short-term hosted platforms to accelerate model development, especially for predictive analytics
  • Expanding our managed-services capabilities for platforms and applications, even for short-term demand
  • Increasing our investment in off-shore capabilities to reduce costs and expand coverage models and other areas, too

Additionally, we are offering more short-term staffing options to our customers. Read Depend on Ironside for your data and analytics bench for short- and long-term success for more about these services.

We’re here to help.

At Ironside, we agree that the analytics community is uniquely-positioned to help our organizations weather the COVID-19 storm, and we’re committed to making our customers and partners as successful as possible.

We look forward to speaking with you about your immediate needs, and continuing the conversation on these and other timely topics.

Contact us today at: Here2Help@IronsideGroup.com

Ironside has historically focused on longer-term, project- or services-based staffing. However, we understand that what you may need most now is immediate, on-demand access to highly-experienced professionals.

To address that critical need, we’re making some of our top people available for short-term work. If you have even the most temporary and immediate need to address capacity constraints, delayed hiring, budget limits, or just to knock a few items off of your to-do list, we can assist with a flexible, remote, talented, and cost-effective pool of professionals. Our areas of expertise include:

  • IBM Analytics portfolio including Cognos, Watson, Netezza and others
  • BI tools including Tableau, Power BI, QuickSight and others
  • Cloud-native technologies on AWS and Microsoft
  • Leading data wrangling, management, and catalog tools
  • Top AI and AML technologies from DataRobot, AWS, and more

The world may be up in the air, but we understand that it has to be business as usual for our clients. We’re here to help you with that.

Contact us today at: Here2Help@IronsideGroup.com

Ironside is pleased to announce the release of a new packaged service “Ascend AI.” For nearly 10 years, Ironside has offered data science expertise and advisory services to organizations who seek to establish AI within their enterprise. Now Ironside offers a powerful new service for organizations who are earlier in their AI journey.

AI is becoming more of a necessity for businesses to retain their competitive edge, keep internal costs low and manage risk. But getting started can be overwhelming. What technologies should we invest in? Should we hire data scientists and how many? What use cases should they work on? Where would they get started? How much will this cost us?  Can our current infrastructure support this? Is our data mature enough? Is our organization ready?

Ironside’s strong history of helping organizations get started on their AI journey allows us to understand common pitfalls and how to pivot around them, have a valuable point of view on AI/ML technology and infrastructure options, and provide a highly skilled data science team. We understand that many organizations can’t jump in feet first and need a way to quickly and easily prove value with rapid cost-effective sprints before they begin to think about hiring or large technology purchases. That is why we created Ascend AI.

What is Ascend AI?

Ascend AI is a packaged service, delivered in progressive modules to allow you to scale up at your own pace.

Ascend AI's Progressive 4-Step Solution

Ironside provides the data science team, including solution architects, developers, experience designers, data engineers and of course experienced data scientists, and leverages their own infrastructure and AI IP that they’ve developed over the years. You provide your data and business subject matter experts who work closely with the Ironside team to develop a customized AI solution that delivers measurable results.

We bring the technology and expertise so you can focus on putting the results to work for your organization.

Who is Ascend AI for?

Ascend AI is right for any organization that says:

  • We need to test out AI use cases before investing in technology and people.
  • We want to build a business case to gain executive support for further AI funding.
  • We want to become an AI driven organization, but without investing in capital expenses or building an internal center of excellence.
  • We need a trusted AI partner, not an off-the-shelf solution.
  • We have unique business problems and use cases that don’t fit any solution on the market.

Get started, today!

If you want all the benefits of implementing artificial intelligence to analyze, action and manage your data, without any of the hassles and headaches, Ascend AI delivers.

When it comes to AI and automated machine learning, more data is good — location data is even better.

At Data Con LA 2019, I had the pleasure of co-presenting a tutorial session with Pitney Bowes Technical Director Dan Kernaghan. We told an audience of data analysts and budding data scientists about the evolution of location data for big data and how location intelligence can add significant and new value to a wide range of data science and machine learning business use cases.

Speeding model runs by using pre-processed data

What Pitney Bowes has done is take care of the heavy lifting of processing GIS-based data so that comes ready to be used with machine learning algorithms. Through a process called reverse geocoding, locations expressed as latitude/longitude are converted to addresses, dramatically reducing the time it takes to prepare the data for analysis.

With this approach, each address is then associated with a unique and persistent identifier, the pbKey™, and put into a plain text file along with 9,100 attributes associated with that address. Depending on your use case, then, you can enrich your analysis with subsets of this information, such as crime data, fire or flood risk, building details, mortgage information, and demographics like median household income, age or purchasing power.  

Surfacing predictors of summer rental demand: location-based attributes

For Data Con LA, we designed a use case that we could enrich with location data: a machine learning model to predict summer revenue for a fictional rental property in Boston. We started with “first person” data on 1,070 rental listings in greater Boston that we sourced from an online property booking service. That data included attributes about the properties themselves (type, number of bathrooms/bedrooms, text description, etc.), the hosts, and summer booking history.

Then we layered in location data from Pitney Bowes for each rental property, based on its address: distance to nearest public transit, geodemographics (CAMEO), financial stress of city block, population of city block, and the like.

Not surprisingly, the previous year’s summer booking and scores based on the description ranked as the most important features of a property. However, it was unexpected that distance to the nearest airport ranked third in importance. Other location-based features that surfaced as important predictors of summer demand included distance to Amtrak stations, highway exits and MBTA stations; block population and density measures; and block socio-economic measures.

By adding location data to our model, we increased the accuracy of our prediction of how frequently “our” property would be rented. Predicting that future is an important outcome, but more important is determining what we can do to change future results. In this scenario, we can change the price, for example, and rerun the model until we find the combination of price and number of days rented that we need to meet our revenue objective.

Building effective use cases for data science

As a Business Partner since 2015, Ironside Group often incorporates Pitney Bowes data — both pbKey flat-file data and traditional GIS-based datasets like geofences — into customized data science solutions built to help companies grow revenue, maximize efficiency, or understand and minimize risk. Here are some examples of use cases that incorporate some element of location-based data into the model design.

Retail loss prevention. A retailer wanting to analyze shortages, cash loss and safety risks expected that store location would be a strong predictor of losses or credit card fraud. However, models using historical store data and third-party crime risk data found that crime in the area was not a predictor of losses. Instead, the degree of manager training in loss prevention was the most significant predictor — a finding that influenced both store location decisions and investments in employee training programs.

Predictive policing. A city police department wanted to a data-driven, data science-based approach to complementing its fledgling “hot spot” policing system. The solution leverages historical crime incident data combined with weather data to produce an accurate crime forecast for each patrol shift. Patrol officers are deployed in real time to “hot spots” via a map-based mobile app. Over a 20-week study, the department saw a 43% reduction in targeted crime types.

Maximize efficiencies for utilities demand forecasting. A large natural gas and electricity utilities provider needed a better way to anticipate demand in different areas of their network to avoid supply problems and service gaps. The predictive analytics platform developed for the utility uses cleaned and transformed first-party data from over 40 different geographic points of delivery, enriched with geographic and weather data to improve the model’s predictions of demand. The result is a forecasting platform that triggers alerts automatically and allows proactive energy supply adjustments based on predictive trends.

About Ironside Group and Pitney Bowes

Ironside Group was founded in 1999 as an enterprise data and analytics solution provider and system integrator. Our data science practice is built on helping clients to organize, enrich, report and predict outcomes with data. Our partnership and collaboration with Pitney Bowes lead to client successes as we combine our use case-based approach to data science with Pitney Bowes data sets and tools.

In today’s “Big Data” era, a lot of data, in volume and variety, is being continuously generated across various channels within an enterprise and in the Cloud. To drive exploratory analysis and make accurate predictions, we need to connect, collate, and consume all of this data to make clean, consistent data easily and quickly available to analysts and data scientists.

Read more

The day-to-day work of an Underwriter ranges from research, to data entry, to pricing a risk, to ultimately negotiating that premium value with an agent. At the core, they need to accurately gauge risk, on a case by case basis. But their job doesn’t stop there. Even if we were to codify all the significant risk factors (as actuarial tables do), this doesn’t translate directly to how much the insurance firm ultimately charges for a given premium. Underwriters need to create an offer that they can justify to their customers, and keep an eye on the prevailing market dynamics.

Read more

LEXINGTON, MA, May 10, 2019 – Ironside, an enterprise data and analytics firm, was featured in a Wall Street Journal article about AI consultants that enable their clients to be self-sufficient with AI and not have to rely on their consulting counterparts to manage the model.

Read more

LEXINGTON, MA, May 3, 2019 – Ironside, an enterprise data and analytics firm, was recognized in the Wall Street Journal this morning for AI work being done at one of our clients, Coverys, a Boston-based provider of medical professional liability insurance.

Read more