Any discussion of Master Data Management automatically includes a discussion of Data Governance. The two go hand in hand. Successful MDM implementations require understanding data ownership, stewardship, and security, as well as determining business rules to be applied to the data. Specific business rules usually include rules for matching and consolidating data items as well as data quality checks. Read more

This is part five in our five part series on the essential capabilities of the competitive data-driven enterprise.

Over the last 20 years of doing business we have seen a number of different analytical data storage and query concepts fall in and out of favor. Throughout this time, a wave of digital transformation in business has dramatically increased the volume of collected data. Machine learning and other probabilistic methods benefit greatly from the law of large numbers so if by now it wasn’t already clear, all that talk about “big data” has really been about the analytics that it enables. As a result, today’s knowledge workers are predisposed to data hoarding, preferring to save everything including the data for which there are no known use cases, since its future value to the organization may still yet be discovered. Read more

This is part four in our five part series on the essential capabilities of the competitive data-driven enterprise.

5 capabilities_master data management

Businesses have been deploying enterprise data governance (defining what the data should be) and master data management (ensuring the data is as defined) programs for decades. Even if your company doesn’t have a formal master data management program by name, chances are good that they are doing some form of master data management in your data warehouse, CRM or ERP systems. As the trend towards decentralized data analysis continues to progress we see a few forces in play that make the case for incorporating a master data management capability into your organizational roadmap: Read more

This is part two in our five part series on the essential capabilities of the competitive data-driven enterprise.

For decades, data integration and modeling have been done in either of two likely places: The enterprise ETL or Data Warehouse environment (IT Developers) or Excel (Analysts). Currently the status quo is being challenged in some of the following ways that highlight the importance of empowering domain and subject matter experts to wrangle and model their own data. Read more

This is part one in our five part series on the essential capabilities of the competitive data-driven enterprise.

The most common form of data-enabled business problem solving begins with a hypothesis around business drivers and relationships within the data. Typically, a well tenured business analyst will pull together the data they know about or have access to in their department and proceed to build their analysis. This standard approach assumes that: Read more

If your organization is seeking to better manage its information as a corporate asset that is to be valued and capitalized, you’re likely focused on implementing programs that will catalyze measurable business results from mountains of business information that may be the product of the last decade or more of digital transformation initiatives. Read more

One size does not fit all. Try as they might, there is not a single BI platform that can offer every capability that users require. With organizational complexity increasing, and the growing demand for self-service analytics, it has become commonplace, even recommended, for organizations to maintain multiple BI platforms to meet the needs of people in diverse roles with differing needs across the organization. Read more

Governance is the ongoing process of creating and managing processes, policies, and information. This includes strategies, processes, activities, skills, organizations, and technologies for the purpose of accelerating business outcomes. It also involves creating organizations, roles and responsibilities to perform this management. In our experience, many organizations address governance once and often without completing the necessary tasks. Organizations that excel in data and analytics governance continuously manage the process on an ongoing basis. Read more

Last week, Ironside’s partner Pitney Bowes, issued a press release announcing the global launch of its new Software & Data Marketplace.  We believe that accessibility to Pitney Bowes data will be valuable to our clients as they will be able to source and process data from multiple providers in the same applications, leading to easier analysis and collaboration of data points. Read more

According to ‘The Economist’, data is the new oil. It is now the world’s most valuable resource. The volume of data available to organizations to capture, store, and analyze has changed the ways in which organizations address innovation, and analytics is a true competitive differentiator.

Unfortunately, business analysts, data scientists, and other line of business users performing self-service analytics are spending a majority of their time preparing data for analysis rather than actually garnering and sharing the insights to be found in it (1), even with the help of self-service data prep tools like Alteryx, Trifacta, and Tableau’s Maestro (coming soon). Read more